On the Lichtenbaum-Quillen Conjectures (Updated 10/30/2021)

Abstract

Starting with some motivations and brief expositions on algebraic K theory, I’ll introduce some early important computations of algebraic K-theory, including computations of K theory of finite fields and of rings of integers for which I will briefly outline the proofs. Then we’ll move on to K-theory with finite coefficients of separably closed fields. With the motivation of recovering some information of K-theory of an arbitrary field from its separable closure, we introduce a few versions of the Lichtenbaum-Quillen conjectures as descent spectral sequences of \’etale Cohomology groups. If time permits, I’ll mention relation to motivic Cohomology that a key tool is some “motivic-to-K-theory” spectral sequence.

These are notes based on my talk on Oct 01, 2021 in UIUC Graduate Homotopy Seminar. The main references are [1] and [2]. The outline of the proof of Quillen’s K-theory of finite fields has been moved to Appendix A.

Here are the notes, updated on 10/30/2021. I thank Prof Grayson for comments and pointing out some typos.

Updates (10/30/2021): Fixing a few typos, adding reference to the claim about the fixed point spectrum K_*F= (K_*E)^G for a Galois extension E\to F.

References

[1] Mitchell, Stephen A. “On the Lichtenbaum-Quillen conjectures from a stable homotopy-theoretic viewpoint.” Algebraic topology and its applications. Springer, New York, NY, 1994. 163-240.

[2] Weibel, Charles A. The K-book: An introduction to algebraic K-theory. Vol. 145. Providence, RI: American Mathematical Society, 2013.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s