Serre-Swan Theorem and some K groups

This is an overview on Serre-Swan theorem and some ideas on the construction of K-groups for a Banach category. Serre-Swan theorem establishes equivalences between the categories of topological vector bundles over a compact Hausdorff space X, the category of finitely generated projective C(X)-modules and the categories of algebraic vector bundles of finite rank over
the affine scheme \mathrm{Spec}C(X). This theorem connects different objects of interest in K-theory.
It also introduces some ideas on the construction of K-groups for a Banach category and
in particular for compact topological spaces and Banach algebras.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s